Shop Project: Lift

Maff’s House of Wayward Mazdas got a huge upgrade this winter, and this one has been a LONG time coming.

I’ve been pricing and shopping and researching (and measuring my low, low ceiling) for over a year, and the right deal was there at the right time, so we pulled the trigger on a Dannmar M-6 mid-rise lift.

The plan is for a semi-permanent install of the “mobile” lift, ditching the cart for the pump and diverter valve, mounting those on the shop’s wall, keeping the wall-side post permanently installed, while keeping the option to move the off-side post sitting in the middle of the floor should the need for more space arise (like if I need to work on the trailer, as an example).

Delivery was…interesting. The freight company sent 1 guy to move the 900 lbs of lift with only a pallet jack that wasn’t actually tall enough to lift the thing. Fortunately, I have a bunch of lumber scraps so we were able to shim it, and after a mighty struggle, we got it down the lift gate, onto some furniture dollies and into the garage.

20181207_171631

Of course, these aren’t destined for the garage, but for the workshop. So I tore down the ‘pallet’ to get as many of the man-portable parts off and lighten the load, called a friend to help wrangle the thing, collected all my load binding gear and attached the winch to the Armada’s tow hitch.

20181207_182450

Carefully, ever so carefully, we backed it down the drive and into position.

20181207_185858

As you can see in the above picture, I’d spent some time measuring out the shop to position the posts, as they need to be plumb and square with each other. With the posts finally in the shop, I moved them into position to confirm that theory translated to the real world.

20181208_124438_HDR

And of course, the Miata won’t be the only vehicle using the lift, so I wanted to make sure it would fit the Dailies in our fleet.

20181209_094024

With everything in position, it was time to start mounting things permanently. I mounted a 2×10 to a pair of studs, then bolted the bracket for the pump and valve to it upside down, using the bolt holes for the diverter valve to mount it. I am mounting the diverter valve in the ceiling, so I didn’t need those holes and they made it convenient.

20181214_112450

Getting the pump mounted was a bit of a bear because it’s BLOODY heavy, but after phoning a friend, again, we got it mounted up.

20181215_112326

Next up were the hydraulic fittings on the posts. Those are a bit of a faff because you need to practically disassemble the post to get to the fittings at the bottom of the hydraulic cylinder. The way they’re designed, is to have 2 45 degree fittings, clocked so they’re “parallel” with each other and make an S-shape out the back of the post to clear the bolt hole back there when the hose, as designed, is installed. I am running the hoses up through the ceiling, so I don’t want that and realised, of course, that two 45s can pretty easily make a 90. Unfortunately there isn’t space at the bottom of the post for that 90 degree bend to pass through, so I had to assemble the 1st 45, put the cylinder in place in the post, then install the 2nd 45 in place down at the bottom of the post, where there really isn’t much room to work. The effort was worth it, however, as it worked a treat. Here you can see the “upgraded” quick disconnect fitting, as the ones the unit ships with are reported to be a little leaky. More a niusance than a real problem, but while I’m here installing it, $30 to fix the issue was well spent.

20181215_200941

I was morally certain that, with the state the shop’s structure was in when we bought the place, the floor was also certainly trash, and had planned & budgeted to cut the floor and pour new reinforced footers for the lift. With this thing holding a ton or more of weight over my head, this was not the sort of thing to take chances with.

My contractor buddy came by and we drilled a few test holes (using the posts’ bolt hole positions to do so, just in case), and found that not only was it thicker than the minimum spec required for the lift, it was in fact steel reinforced and with hard pack below it showing no signs of having settled (which would leave the concrete unsupported). A very pleasant surprise that saved a ton of time, effort and budget.

We drilled the holes and opted to epoxy the wedge anchors in (along with expanding them properly) for the full belt-and-suspenders to make sure they were secure.

20181217_124309_HDR

With the posts finally mounted in place, I could start working on the hydraulic connections. Doing my research I found many people who extended 1 or both hoses to the posts to remote mount the pump similar to what I’m doing. That seems problematic for 2 reasons: If you only extend 1 hose, you can end up with the lift not raising evenly, and if you extend both hoses, well…it’s bloody expensive. Some measuring showed that the hoses from the valve to the leg were plenty long enough if I remote mounted the diverter valve in the ceiling, then I would only have to have 1 hose made to go from the pump to the valve, and route the hoses to the posts down from above.

The challenge, however, is that many have reported issues bleeding air from the system when running hoses that high above the pump, so I opted to do that before mounting everything in the ceiling. This made mounting slightly more challenging, as I was going to be dealing with full hydraulic hoses, but it was worth the effort. As I was bolting the fairly heavy valve to a ceiling joist, I also made a load-spreader plate with the bolt hole pattern from the valve to put on the opposite side so that I’m not risking pulling the bolts through and damaging the joist further.

I’ll admit, the first test load didn’t put a lot of strain on the system…

20181217_174110

With the system bled and the hoses and valves mounted and routed up in the rafters, it was time for a real test. The lift is rated to 6000 lbs. I have a vehicle that weighs just under that figure. Let’s see if all the work we did holds!

20181220_194031

With the Nissan being as tall as it is, there wasn’t much head room, but it does look like I could do some minor suspension or brake work on the lift should the need arise. It’s not very high, but the lifting arms are nearly fully extended to reach the frame rails, so there was quite a torque arm on the mounts here. Given that nothing budged, I think it’s safe to say we can put this unit into service!

Job the first was to quiet a noisy power steering pump on the Subaru. There’s an O-ring prone to failure that lets air in when cold, and you need the wheels off the ground to bleed the power steering hydraulics, so why not give ‘er a go? I couldn’t get full height w/ the Subaru (I’ll likely be moving that garage door opener off to one side), but it got it plenty high to be useful for under-car work:

20181221_083036_HDR

And now with Papa Bear and Momma Bear having tried out the new digs, it was Baby Bear’s turn. And for that, this lift was JUUUST right. Turns out, I can actually use a measuring tape correctly from time to time!

The first full draft pull on the lift (with a load), and no clearance problems anywhere.

20181221_164357

Ok maybe 1 clearance problem…. I’ll need to make myself a new rolling chair, methinks, but I was pretty certain of that going into this.

20181221_164303
20181221_164418

The next fun job is going to be marking out spots for the setup stands and then re-leveling those to each other, as the old spots won’t work with the lift’s position. The offside post is actually directly on where 1 of the pads went in the previous iteration. And next spring, likely, I’ll get my hands on a pressure washer and blast the old markings off of the floor. But until then, I’m going to enjoy using my new toy…er…tool!

Advertisements

Transmission Failure

It was bound to happen eventually, but the law of averages finally caught up with me. At the last event, something went very very wrong with the transmission. Not enough to disable the car, but it came in from a run and was stuck in 2nd gear. We were able to reef on the shifter until it popped out and into the neutral position, and got it loosend up to where 3rd and 4th were usable (but really really hard to find at speed). 5th and Reverse were completely locked out.

Upon inspection at home, I expected that there was an exploded shifter bushing inside the turret that was fouling things up, but the one in there is delrin, and shouldn’t degrade and get brittle like the stockers. There was no evidence of debris in the turret, so the transmission had to come out to get the good spare in.

20180620_212821_HDR

While I was under there, I realized that there were a couple of brackets protruding into the tunnel that interfere with the transmission going out / in from the bottom, so I did some Prepared things to them and…let’s just say they’re not a problem anymore.

20180729_122336

Pro-tip: there’s a bunch of different bolt lengths and sizes holding the transmission to the block and starter. Organization is important.

20180620_212814

While pulling the transmission, I found a coolant weep from the cap on the back of the head that always fails. I guess it was pretty close to failure when it got bumped by a wrench or socket disconnecting the transmission from the block, so I replaced that while I had everything apart. It’s much easier with the transmission out of the way.

20180730_101131

Now’s where stuff got decidedly un-fun: I’d forgotten, because it’s been an age since anything like this has gone wrong with the car (just before 2013 Solo Nationals, IIRC) that the mating between the Competition Clutch and the transmission input shaft has always been a massive pain. Honestly , it’s nearly a press fit. It’s obviously not, because it works, but ever single time I’ve had to work on it, it was a matter of getting the transmission close enough to start a couple of bolts 180 degrees off from each other in the bell housing and then slowly tighten them to pull the transmission into the clutch. Obviously, that’s not what you WANT to do, but I’m going to keep telling myself it was careful so it’s fine.

I have other friends running the same twin-disk clutch without these issues, so I’m pretty sure mine’s just on the tighter side of the tolerance.

The point of all this is that after one and a half hours under the car, we weren’t able to make any progress in getting the transmission in. We just could never get quite the right angles in 3 dimensions while working on our backs. After being thoroughly exhausted by that, we decided to pull the motor.

….to install a transmission. I know. But it was going to be easier to work on everything out of the car vs under. In about 45 minutes we had the transmission out. We then spent the next hour once again fighting to get it on until it seated JUST far enough to get the aforementioned pair of bolts started and pulled the trans in.

20180802_214149

We stopped for the night after getting them mated and picked back up Saturday morning. From there, it was 2 hours from turning the first wrench to do up the rest of the bellhousing and starter bolts, until firing the engine.  Another 30 minutes and the exhaust, intake, prop shaft, trans fluid, shifter, coolant bled, etc.  were done and I ran the car through a warm-up cycle to make sure everything was working as designed. With the exception of that damn clutch, I LOVE LOVE LOVE how easy this car is to work on.

Less than 3 hours from engine and trans being out of the car to wheels on the ground and race-ready. That *may* be a personal best.

20180804_131531_HDR

That afternoon, I took a couple hours to dig into the transmission and a) see how they go together (and realize I’m not cut out for working on them), and b) see what actually broke.
What I found was the counter-shaft (the one offset from the input and output shafts) was *TWISTED* so that the wheels that should move fore and aft on those splines couldn’t, jamming it in gear, and locking us out of the 5th / reverse gate all together.

Click to zoom in, it’s impressive just how bent that shaft is.

20180804_141056

I’m only making 130 whp, but I guess 10 years of clutch-dump launches finally caught up to us. Given that consistent abuse, I’m pretty impressed it held up as long as it did. Because it wasn’t a gear wheel, or a shift fork or syncro, something relatively straight-forward to replace, the transmission has been relegated to the scrap bin. Before I tossed it out, however, it was recommended to me that an actual input shaft makes a FAR more accurate clutch alignment tool than the plastic ones every clutch kit ever comes with, so I cut the last foot or so of the input shaft off to keep as a useful tool, so I guess the transmission failure wasn’t a *complete* loss.

20180804_150136

Shop Project – Small Lathe Rebuild Part 2

With the rest of the supplies to clean it in hand, it’s time to get back to it.

I really want to show the Before and After in the same shot. 0000 Steel Wool and WD40 (and some elbow grease) did the business on that crud.

20171207_134747

The spindle face got a similar treatment, though it took much less effort. Load up a piece of steel wool with WD40, then turn the motor on and it basically cleans itself.

20171207_140110

With the big cleanup done, it’s on to the ol’ “install is reverse of removal.” First the carriage goes on…

20171207_140105

Followed by the apron and lead screw.

20171207_143058

Then the cross-slide, compound and spindle go back on. She cleaned up fairly well if I say so myself!

20171207_213039

The shear pin for the lead screw was pretty well boogered on removal. Thankfully, I had this handy-dandy lathe with which to make myself a new one:

20171208_142648

20171208_142923

After getting it back together, the cross-slide feed was still really sticky. I thought maybe the feed screw was bent (because it’s super skinny). I took it all apart and everything measured fairly straight, so I dove a little deeper and found that the graduated ring was binding up against the screw’s housing at the same spot on every rotation. If I took the ring off, the handle turned perfectly smooth.

20171208_233106

I could make it loose enough to work but then it wouldn’t hold its position, or I could make it tight enough to hold its position and it would be impossible to turn through that rough spot. You can sort of see where it’s interfering here, on that dark ring. I broke out the emery cloth and a fresh can of elbow grease and spent a few minutes knocking it back just enough that it turns nice and freely now.

20171208_233035

Next, the tail-stock’s alignment was an unknown quantity, so I wanted to take the time to center it up correctly with the bore of the chuck. Usually you’d use a couple of tapered centers for that, but, well, I don’t have any of those yet. I turned a center from a piece of scrap steel rod, and then used a centering bit in the tail-stock (which also comes to a point) and used those 2 points to get it trammed in. It’s probably not *perfect*, but it’s well within good-enough range.

Before:

20171209_100935

After:

20171209_101040

Next week, the quick change tool post arrives. I’ll need to make a spacer for that, get the tools aligned, and get some feet made for this thing. After that I’ll…probably… have motivation to clean it’s spot in the shop, and then, at long last, put this thing to work.

Shop Project – Small Lathe Rebuild Part 1

I know, I know. It’s not a Miata build, but it is Miata adjacent. I’ve already got some parts I’m looking to turned on it for my car. And it’s an interesting process, so I figured some of y’all might be interested.

I’ve been shopping for a small lathe for the shop for some time now, but kinda had a deal fall in my lap for a used, neglected, Emco 8×20 lathe. A buddy had bought it at a “used tool” auction at his work many years ago, then had a kid (and inherited his grandfather’s lathe that also needs work), so this one was just collecting dust.

IMG957972

Only a moderate sketch factor with the rigging, but I stopped a couple times in the first few miles to cinch the straps down as it settled in place (and secure the rear door that had swung open), and it was fine the rest of the way back home.

20171203_110829

And just for fun, I turned Baby’s First Chip just to say I had before the teardown started. Because boy did it need to be gone through.

20171203_124805

With a little help from a couple friends, we got it down to my workshop. If you’ve ever seen where my shop is, you know how sketchy THAT was. I backed the trailer down the hill, then used the winch to slowly slide it off the trailer and into the workshop, with someone on each side to steer.

One of the first things I noticed (and was pretty worried by) was the runout on the chuck. Hopefully the entire headstock won’t need to be rebuilt, because I found the most likely culprit: a bunch of swarf built up between the back of the chuck and the lathe’s face plate. Hopefully tidying this up will improve that situation, or else I’m going to have to figure out what’s crooked in the system. The nice thing is that the lathe can be used to true itself up if need be.

20171203_142803

Next up was the sticky lever in the quick-change gear box for the power feed for the compound. Apparently they’ve been using grease in this thing instead of machine oil. This…will become a running theme. I let it soak in simple green then oiled it while the machine ran for a few minutes and that freed the lever up to move freely side to side. The lead screw will need to be taken off and THOROUGHLY cleaned, however, as it is caked in fine chips. This too will become a running theme.

image-20171203_155821

My next biggest problem is both the free play and stiction in the cross slide. The free play can be tuned out by adjusting the gibs and the tension on the nut that the adjustment screw rides in, but a lot of the stiction is from old, crusty grease. So, the entire compound / cross slide / top slide and apron are going to come apart to be thoroughly cleaned up. I’m not going for “car show” levels of cleanliness, but I want it to run well even if it’s not the most beautiful belle at the ball. Once again, a ton of crud under the tool post. I actually couldn’t find the witness mark for setting the tool post angle because it was caked in dirt and oil. It should turn much more freely now.

20171203_205246

Got the cross slide wheel & screw out. Again, CAKED on grease everywhere I turn (unintentional lathe joke!). To be clear, this isn’t grease as you think of it, just heavily applied. This is stuff that’s been on there for 20 years, dried up and left a thick coating of dry crap that has to be scraped off by a fine pick in many instances.

20171203_212833

And finally, the compound comes off the ways. This is the bottom of the compound, where it would slide on the lathe bed. As you can see, some surface rust (not anywhere it actually touches the lathe ways, thankfully), and a lot of old oil & dust and grit that will need to be cleaned off.

20171204_114051

With the compound, apron and lead screw off, she’s now pretty stark naked.

20171204_114517

Up next was to work on the apron (ie: the gearset that uses the lead screw to run the power feed for the compound, and rides under the compound). This is what greeted me when I took it off. Take a moment to click the picture and zoom in on just how bad it is. The amount of crud caked in the threading half-nuts, the caked on grease (more…). After I’d run it for a while, the handle for the power feed was jammed on and couldn’t be disengaged because of what ended up being a chunk of dried grease getting caught in its working. It was bad.

20171204_114252

A bath in the parts washer made almost no difference in the grease on the gear train there. I ended up to have to disassemble the power feed engagement lever and gear assembly and then go through the entire gear train and the lead screw, tooth by tooth, thread by thread, with a pick to actually get the hardened gunk out of the system.

20171205_093520

The compound angle was really tough to set earlier. This is what I found between the angle dial that’s pressed onto that arbor, and the tool post.

20171205_133947  It was a ton of work, but MAN everything turns smoothly now. It’s such a huge difference. I put the barest whiff of white lithium grease on it per the factory service recommendations, and then it’s maintained afterwards with 140W gear oil. 20171206_115325

She still needs work, but we’re getting close. I’ve got the final cleaning supplies (specifically, some 0000 steel wool to clean the ways and gibs) coming in the next day or 2, and a handful of replacement parts and upgrades that should be coming next week.

Setup Stand Build Plans

20170618_143411

First off:

warning2

Now that the legal jargon is out of the way:

The response I got from the setup stand build has been tremendous. Several folks have suggested that they’d like plans be made available so they can build their own set, and that they’d be happy to throw a few bucks my way for the time that went into developing them. I’m staggered, because I thought I’d make a couple sets for buddies and that would be it, and that would be that.

 

The directions include a materials list, a cut list, some 3D modeling and photographs of the stands.

Chances are that, having built a few sets now, I may have left out a few things that seem intuitive to me just from having done it several times. Let me know if you have any questions and I’ll do my best to answer them.

 

If you’d like the plans, e-mail me at amaff5@gmail.com and I’ll send a .PDF with the plans.

 

This is very much a hobby for me, not a business, and these are super useful tools for “us people”. I’d rather more of my racing buddies have access to them than not, so I’m making the plans available for free. Hell, if we had money to burn we’d just spend $2,000 on the commercially available options and be done with it.

That said, I have put a great deal of time and sweat (omg so much sweat you guys) developing these. If you feel that these were worth it and / or want to throw a few bucks in the hat / Tire Fund for the R&D done on these, you can do so here:

Donate with PayPal

Links to the original build ‘thread’:

Part 1
Part 2
Part 3

Setup Stands Part 3 – Setup Setup Setup

Now that the fabrication work is done on the setup pads, it’s time to set up the setup pads so that the setup pads can be use to set up the car.

Setup.

First thing’s first: Paint. It’s always paint.

20170612_160013

20170613_095521

Step 2 is…more paint, oddly enough. I picked a fairly central location in the shop for the setup pads, then got them on the car so that they could be squared up, so that their locations can be marked. This is so that each pad goes in the same spot, in the same orientation each time, that way once they’re leveled, they remain consistent.

I made up a stencil to use for marking the floor, put the foot of each corner on the circle in the middle, then marked out the perimeter with tape.

20170614_211658

That done, the stands came out from under the car, the car was moved out of the shop, and each spot was marked:

20170615_103302

20170615_153653

Next it was time to level the full set. I started off by setting the feet to their highest setting so that I could find the lowest corner, and then adjust the rest of the pads to meet that corner.

CUE THE LASERS!!!

20170616_204525

I used a couple of my big fabrication squares, made white backgrounds (to better see the laser) and then made a mark on each at the same level. Get the lines on the squares to meet the laser at both the front and rear of each pad, and you’ve got it level.

20170616_205211

20170616_205238

20170616_214140

With the setup of the setup pads done, it was time to…. do some setup on the scales. Specifically, I was sick of dealing with the rats nest each time I unspooled the cables, so I made left- and right-side “harnesses” to keep things tidy. They’ll run under the car down the middle so that they’re out of the way of jacks and what not.

20170617_133630

And with that, somehow, miraculously, despite taking what felt like most of my life, they’re complete and in service! They look great and will work great. Having now used them exactly once, they were already worth the effort. Being able to get and keep a consistent setup on the car (and help friends with their cars) can only be a good thing.

20170618_143411

 

Now to make 2 more sets…

 

Part 1
Part 2

Setup Stands Part 2 – Roll Out!

Roll off pads are very useful for setup, allowing a place to make alignment changes, to zero the scales, and to allow the tire to roll to undo any bind that setting changes may have introduced. They are also the thing that adds a TON of cost to the commercial setup stand options.

Since I’m fully committed at this point, might as well go big.

The pad itself will be a pieces of 1/8″ aluminum sheet, supported on both sides and in the middle.

The side supports are made of 3/16″ steel bar with 3 holes per side drilled and a nut welded to the back side on each to secure the plate. The bars are supported on 3 sides, sitting on the frame on the short sides and 1 long side. Those bars on top of the frame puts the floor just a shade lower than the scale pads, allowing space for some thin grease plates to do alignments.

The center support is a length of 1″ bar with 3 holes through it. 1/4″ on one side for the bolts, and just about 1″ on the bottom to allow a 10mm socket with an M6 nut to be inserted from the bottom.

20170425_111651

20170530_215901

20170531_134710

Once the 2 sides were done, the next challenge was fitting up the middle support tube such that it was dead level with the 2 sides so the floor is perfectly flat. To do that, I flipped the entire frame so that the side-supports were flat against the welding table, then placed the tube in to get tacked up so that the welding table top became the reference surface for the whole setup.

20170425_181245

20170425_184036

With the frames completed, it was time to fab up the floor. After rough-cutting it, clamped it to the frame and drilled the 3 central holes as they can be accessed from underneath. The challenge, however, was to get the position of the 6 holes on the sides that were covered up by the angle iron.

This is where a DILYSI Dave hot tip came in incredibly handy. Long ago when I was building the new Seat Mounts, he suggested making some blind transfer punches out of some bolts. I made up a few more so I’d have a full set for this job. I threaded them into the holes, then bolted down the 3 central bolts so that the floor would be in the correct place, then gave each location a sharp whack with a rubber mallet to mark its location on the aluminum sheet for drilling.

20170425_214112

20170425_214112

20170425_215455

With the prototype nearly complete, I wanted to do some strength testing (ie: dropping the car on it vigorously a few times) to make sure there weren’t any glaring issues:

20170425_220310

And since I was painting the new Saw Stand, I figured I might as well hit this one with a coat of paint. This, it would turn out, would be a mistake.

20170505_180015

The keen eyed will notice 2 glaring omissions at this point (the point at which I thought I was done with this…). 1. There is no provision for the cable for the scales to pass through, and 2. There are no wheel stops. The commercial ones don’t usually have wheel stops, but they’re much shorter so were you to roll the car off of them, the likelyhood of them damaging the car is fairly low. These are very tall, and VERY strong. As such, should the car roll off of these, it would be ugly.  I’ll address these next.

First up is a notch for the cable. Attempt number 1 was…. well… fugly. I tried doing it with and angle grinder and the results were bad.

20170521_153950

It was at this point that the true value of a welder came into play. That was ugly enough that I decided to un-cut steel.

20170521_203640

After a rethink and some consultation, I decided to use a hole saw instead. Normally this wouldn’t be a problem, however at this point, with the frame fully assembled, it was a bit late in the game. This is by far the dumbest thing I’ve ever chucked up in the drill press, but damn if it didn’t work!

(I’ve no idea why this photo shows up sidewards. Click the picture for the right-side-up image)

20170522_085952

Thankfully the results were most excellent. After a little cleanup of the sharp edges and corners with a flap disk, I was very happy.

20170522_090728 Now that I know where the notch needs to go, subsequent cuts were FAR easier. 20170522_130536

On to the tire stops. After a bit of figuring and evolutionary engineering, I ended up with an easy to fabricate, dead simple solution that will 1) stop the car rolling off the ends, and 2) still allow the stands to stack together to minimize the space they take in the shop.

Part the first is a 2″ length of 1/2″ OD tube welded in the center of each end of the frame:

20170531_175720

Next is a 6″ length of 3/8″ steel rod, with a bend around the 2″ mark and a bullet nose ground in on each end. The bend is so that they won’t just fall through the tube, and it leaves a ~4″ step that would take an immense amount of force to get the tires over. If you figure out a way to do that, you do your alignments far more aggressively than I.

20170603_143414

The short side / long side has an added advantage that I wish I could take credit for but in reality was a complete, but happy, accident. Up front, that long post interferes with the splitter when rolling the car back and forth between the scale and the roll off pad.

20170617_140137

With it flipped upside down, there’s still plenty of a step to stop the car (plus the taller sides are still up at the rear), and the splitter clears easily. I love it when a plan, accidental or otherwise, comes together!

20170617_140226

Now to just do all that 3 more times.

To be continued!

 

Part 1
Part 3